Analysis of Full-waveform Lidar Data for Classification of Urban Areas

نویسندگان

  • Clément Mallet
  • Uwe Soergel
  • Frédéric Bretar
چکیده

In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire emitted and backscattered signal of each laser pulse. Instead of clouds of individual 3D points, FW devices provide connected 1D profiles of the 3D scene, which contain more detailed and additional information about the structure of the illuminated surfaces. This paper is focused on the analysis of FW data in urban areas. The problem of modelling FW lidar signals is first tackled. The standard method assumes the waveform to be the superposition of signal contributions of each scattering object in such a laser beam, which are approximated by Gaussian distributions. This model is suitable in many cases, especially in vegetated terrain. However, since it is not tailored to urban waveforms, the generalized Gaussian model is selected instead here. Then, a pattern recognition method for urban area classification is proposed. A supervised method using Support Vector Machines is performed on the FW point cloud based on the parameters extracted from the post-processing step. Results show that it is possible to partition urban areas in building, vegetation, natural ground and artificial ground regions with high accuracy using only lidar waveforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Managing Full Waveform Lidar Data: a Challenging Task for the Forthcoming Years

This paper proposes to summarize researches and new advances in full waveform lidar data. After a description of full waveform lidar systems, we will review different methodologies developed to process the waveforms (modelling, correlation, stacking). Applications on urban and vegetated areas are then presented. The paper ends up with recommendations on future research themes.

متن کامل

Using Full Waveform Data in Urban Areas

In this paper, the use of waveform data in urban areas is studied. Full waveform is generally used in non-urban areas, where it can provide better vertical structure description of vegetation compared to discrete return systems. However, waveform could be potentially useful for classification in urban areas, where classification methods can be extended to include parameters derived from wavefor...

متن کامل

Urban Vegetation Detection Using High Density Full-waveform Airborne Lidar Data - Combination of Object-based Image and Point Cloud Analysis

In this paper, a new GIS workflow for fully automated urban vegetation and tree parameter extraction from airborne LiDAR data is presented. The strengths of both rasterand point cloud-based methods are combined, in order to derive a vegetation map layer as well as single tree parameters (e.g. tree height and crown width) in an efficient way. The workflow is implemented in GRASS GIS making use o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008